

 Navigation

 	
 index

 	
 next |

 	elasticluster 1.0 documentation

Welcome to elasticluster’s documentation!

Introduction

elasticluster aims to provide a user-friendly command line tool to
create, manage and setup computional clusters hosted on cloud
infrastructures (like Amazon’s Elastic Compute Cloud EC2 [http://aws.amazon.com/ec2/]) or a
private OpenStack [http://www.openstack.org/] cloud). Its main goal is to get your own private
cluster up and running with just a few commands; a YouTube video [http://youtu.be/cR3C7XCSMmA]
demoes the basic features of elasticluster.

This project is an effort of the
Grid Computing Competence Center [http://www.gc3.uzh.ch/] at the
University of Zurich [http://www.uzh.ch], licensed under the
GNU General Public License version 3 [http://www.gnu.org/licenses/gpl.html].

Features

elasticluster is in active development, but the following features at the current state:

	Simple configuration file to define cluster templates

	Can start and manage multiple independent clusters at the same time

	
	Automated cluster setup:

	
	use Debian GNU/Linux [http://www.debian.org], Ubuntu [http://www.ubuntu.com], or CentOS [http://www.centos.org/] as a base operating system

	supports multiple batch systems, including SLURM [https://computing.llnl.gov/linux/slurm/], Grid
Engine [http://gridengine.info] or Torque/PBS [http://www.adaptivecomputing.com/products/open-source/torque/]

	supports Hadoop [http://hadoop.apache.org/] clusters

	add useful tools like Ganglia [http://ganglia.info] for monitoring...

	...or anything that you can install with an Ansible [http://ansible.cc] playbook!

	Grow a running cluster

elasticluster is currently in active development: please use the
GitHub issue tracker to file enhancement requests and ideas [https://github.com/gc3-uzh-ch/elasticluster/issues]

Architecture

The architecture of elasticluster is quite simple: the configuration
file in ~/.elasticluster/config defines a set of cluster
configurations and information on how to access a specific cloud
webservice (including access id and secret keys).

Using the command line (or, very soon, a simple API), you can start a
cluster and override some of the default values, like the number of
nodes you want to fire up. Elasticluster will use the boto library [https://github.com/boto/boto]
to connect to the desired cloud, start the virtual machines and wait
until they are accessible via ssh.

After all the virtual machines are up and running, elasticluster will
use ansible [http://ansible.cc] to configure them.

If you do a resize of the cluster (currently only growing a cluster
is fully supported) new virtual machines will be created and again
ansible [http://ansible.cc] will run for all of the virtual machines, in order to
properly add the new hosts to the cluster.

Table of Contents

	Installation
	Installing from PyPI

	Installing from github

	Configuration
	Basic syntax of the configuration file

	Cloud Section

	Login Section

	Setup Section

	Cluster Section

	Cluster node section

	Usage
	The start command

	The stop command

	The list command

	The list-nodes command

	The list-templates command

	The setup command

	The resize command

	The ssh command

	The sftp command

	Playbooks distributed with elasticluster
	Slurm

	Gridengine

	Ganglia

	Hadoop

	OrangeFS/PVFS2

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Grid Computing Competence Centre, University of Zurich.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	elasticluster 1.0 documentation

Installation

elasticluster is a Python [http://www.python.org] program; Python version 2.6 is required
to run it.

The easiest way to install elasticluster is using pip [https://pypi.python.org/pypi/pip], this will
install the latest stable release from the PyPI [https://pypi.python.org/pypi] website. The
following section: Installing from PyPI will explain you how to do
it.

If you instead want to test the development version, go to the
Installing from github section.

Installing from PyPI

It’s quite easy to install elasticluster using
pip [https://pypi.python.org/pypi/pip]; the command below is all you
need to install elasticluster on your system:

pip install elasticluster

If you want to run elasticluster from source you have to install
Ansible [http://ansible.cc] first:

pip install ansible
python setup.py install

Installing from github

The source code of elasticluster is github [https://github.com/], if you want to test the
latest development version you can clone the github elasticluster repository [https://github.com/gc3-uzh-ch/elasticluster].

You need the git command in order to be able to clone it, and we
suggest you to use python virtualenv [https://pypi.python.org/pypi/virtualenv] in order to create a
controlled environment in which you can install elasticluster as
normal user.

Assuming you already have virtualenv installed on your machine,
you first need to create a virtualenv and install ansible, which is
needed by elasticluster:

virtualenv elasticluster
. elasticluster/bin/activate
pip install ansible

Then you have to download the software. We suggest you to download it
within the created virtualenv:

cd elasticluster
git clone git://github.com/gc3-uzh-ch/elasticluster.git src
cd src
git submodule init
git submodule update
python setup.py install

Now the elasticluster should be available in your current
environment.

 Copyright 2013, Grid Computing Competence Centre, University of Zurich.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	elasticluster 1.0 documentation

Configuration

All the information about how to access a cloud provider and how to
setup a cluster is stored in a configuration file. The default
configuration file is stored in your home directory:
~/.elasticluster/config but you can specify a different location
from the command line with the -c option.

When elasticluster is run for the first time, if no configuration
file is found it will copy a template configuration file [https://raw.github.com/gc3-uzh-ch/elasticluster/master/docs/config.template>] in
~/.elasticluster/config. Such template is fully commented and self
documented.

Basic syntax of the configuration file

The file is parsed by ConfigParser module and has a syntax similar
to Microsoft Windows INI files.

It consists of sections led by a [sectiontype/name] header and
followed by lines in the form:

key=value

Section names are in the form [type/name] wher type must be one of:

	cloud

	define a cloud provider

	login

	define a way to access a virtual machine

	setup

	define a way to setup the cluster

	cluster

	define the composition of a cluster. It contains references to
the other sections.

	cluster/<clustername>

	override configuration for specific group of nodes within a cluster

You must define at least one for each section types in order to have
a valid configuration file.

Cloud Section

A cloud section named <name> starts with:

[cloud/<name>]

The cloud section defines all properties needed to connect to a
specific cloud provider.

You can define as many cloud sections you want, assuming you have
access to different cloud providers and want to deploy different
clusters in different clouds. The mapping between cluster and cloud
provider is done in the cluster section (see later).

Valid configuration keys

provider

the driver to use to connect to the cloud provider.
So far, the only accepted value is boto.

ec2_url

the url of the EC2 endpoint. For Amazon is probably
something like:

https://ec2.us-east-1.amazonaws.com

replace us-east-1 with the zone you want to use
while for OpenStack you can get it from the web interface

ec2_access_key

the access key (also known as access id) your cloud
provider gave you to access its cloud resources.

ec2_secret_key

the secret key (also known as secret id) your cloud
provider gave you to access its cloud resources.

ec2_region

the availability zone you want to use.

Examples

For instance, to connect to the Hobbes private cloud [http://hobbes.gc3.uzh.ch] of the University of Zurich [http://www.uzh.ch] you can
use the following:

[cloud/hobbes]
provider=ec2_boto
ec2_url=http://hobbes.gc3.uzh.ch:8773/services/Cloud
ec2_access_key=****REPLACE WITH YOUR ACCESS ID****
ec2_secret_key=****REPLACE WITH YOUR SECRET KEY****
ec2_region=nova

For Amazon instead (region us-east-1) you can use:

[cloud/amazon-us-east-1]
provider=ec2_boto
ec2_url=https://ec2.us-east-1.amazonaws.com
ec2_access_key=****REPLACE WITH YOUR ACCESS ID****
ec2_secret_key=****REPLACE WITH YOUR SECRET KEY****
ec2_region=us-east-1

OpenStack users

From the horizon web interface you can download a file containing your
EC2 credentials by logging in in your provider web interface and
clicking on:

	“settings“

	
	=> “EC2 Credentials“

	=> “Download EC2 Credentials“

The ec2rc.sh file will contain some values. Update the
configuration file:

ec2_url using the value of the variable EC2_URL
ec2_access_key using the value of the variable EC2_ACCESS_KEY
ec2_secret_key using the value of the variable EC2_SECRET_KEY

Login Section

A login section named <name> starts with:

[login/<name>]

This section contains information on how to access the instances
started on the cloud, including the user and the SSH keys to use.

Some of the values depend on the image you specified in the
cluster section. Values defined here also can affect the setup
section and the way the system is setup.

Mandatory configuration keys

image_user

the remote user you must use to connect to the virtual machine

image_sudo

Can be True or False. True means that on the remote machine
you can execute commands as root by running the sudo program.

image_user_sudo

the login name of the administrator. Use root unless you know
what you are doing...

user_key_name

name of the keypair to use on the cloud provider. If the keypair
does not exist it will be created by elasticluster.

user_key_private

file containing a valid RSA or DSA private key to be used to
connect to the remote machine. Please note that this must match
the user_key_public file (RSA and DSA keys go in pairs). Also
note that Amazon does not accept DSA keys but only RSA ones.

user_key_public

file containing the RSA/DSA public key corresponding to the
user_key_private private key. See user_key_private for more
details.

Examples

For a typical Ubuntu machine, both on Amazon and most OpenStack
providers, these values should be fine:

[login/ubuntu]
image_user=ubuntu
image_user_sudo=root
image_sudo=True
user_key_name=elasticluster
user_key_private=~/.ssh/id_rsa
user_key_public=~/.ssh/id_rsa.pub

while for Hobbes appliances you will need to use the gc3-user
instead:

[login/gc3-user]
image_user=gc3-user
image_user_sudo=root
image_sudo=True
user_key_name=elasticluster
user_key_private=~/.ssh/id_rsa
user_key_public=~/.ssh/id_rsa.pub

Setup Section

A setup section named <name> starts with:

[setup/<name>]

This section contain information on how to setup a cluster. After
the cluster is started, elasticluster will run a setup provider in
order to configure it.

Mandatory configuration keys

provider

the type of setup provider. So far, only ansible is supported.

Ansible-specific mandatory configuration keys

The following configuration keys are only valid if provider is
ansible.

<class>_groups

Comma separated list of ansible groups the specific <class> will
belong to. For each <class>_nodes in a [cluster/] section there
should be a <class>_groups option to configure that specific class
of nodes with the ansible groups specified.

If you are setting up a standard HPC cluster you probably want to
have only two main groups: frontend_groups and compute_groups.

To configure a slurm cluster, for instance, you have the following
available groups:

	slurm_master

	configure this machine as slurm masternode

	slurm_clients

	compute nodes of a slurm cluster

	ganglia_master

	configure as ganglia web frontend. On the
master, you probably want to define ganglia monitor as well

	ganglia_monitor

	configure as ganglia monitor.

You can combine more groups together, but of course not all
combinations make sense. A common setup is, for instance:

frontend_groups=slurm_master,ganglia_master,ganglia_monitor
compute_groups=slurm_clients,ganglia_monitor

This will configure the frontend node as slurm master and ganglia
frontend, and the compute nodes as clients for both slurm and
ganglia frontend.

A full list of the available groups is available at the
Playbooks distributed with elasticluster page.

<class>_var_<varname>

an entry of this type will define a variable called <varname>
for the specific <class> and add it to the ansible inventory
file.

playbook_path

Path to the playbook to use when configuring the system. The
default value printed here points to the playbook distributed with
elasticluster. The default value points to the playbooks
distributed with elasticluster.

Examples

Some (working) examples:

[setup/ansible-slurm]
provider=ansible
frontend_groups=slurm_master
compute_groups=slurm_clients

[setup/ansible-gridengine]
provider=ansible
frontend_groups=gridengine_master
compute_groups=gridengine_clients

[setup/ansible-pbs]
provider=ansible
frontend_groups=pbs_master,maui_master
compute_groups=pbs_clients

[setup/ansible_matlab]
Please note that this setup assumes you already have matlab
installed on the image that is being used.
provider=ansible
frontend_groups=mdce_master,mdce_worker,ganglia_monitor,ganglia_master
worker_groups=mdce_worker,ganglia_monitor

Cluster Section

A cluster section named <name> starts with:

[cluster/<name>]

The cluster section defines a template for a cluster. This section
has references to each one of the other sections and define the
image to use, the default number of compute nodes and the security
group.

Mandatory configuration keys

cloud

the name of a valid cloud section. For instance hobbes or
amazon-us-east-1

login

the name of a valid login section. For instance ubuntu or
gc3-user

setup_provider

the name of a valid setup section. For instance, ansible-slurm
or ansible-pbs

image_id

image id in ami format. If you are using OpenStack, you need to
run euca-describe-images to get a valid ami-* id.

flavor

the image type to use. Different cloud providers call it
differently, could be instance type, instance size or
flavor.

security_group

Security group to use when starting the instance.

<class>_nodes

the number of nodes of type <class>. These configuration
options will define the composition of your cluster. A very common
configuration will include only two group of nodes:

	frontend_nodes

	the queue manager and frontend of the cluster. You
probably want only one.

	compute_nodes

	the worker nodes of the cluster.

Each <class>_nodes group is configured using the corresponding
<class>_groups configuration option in the [setup/...]
section.

ssh_to

ssh and sftp nodes will connect to only one node. This is the
first of the group specified in this configuration option, or the
first node of the first group in alphabetical order. For
instance, if you don’t set any value for ssh_to and you defined
two groups: frontend_nodes and compute_nodes, the ssh and sftp
command will connect to compute001 which is the first
compute_nodes node. If you specify frontend, instead, it will
connect to frontend001 (or the first node of the frontend
group).

Optional configuration keys

image_userdata

shell script to be executed (as root) when the machine
starts. This is usually not needed because the ansible provider
works on vanilla images, but if you are using other setup
providers you may need to execute some command to bootstrap it.

Examples

Some (working) examples:

[cluster/slurm]
cloud=hobbes
login=gc3-user
setup_provider=ansible-slurm
security_group=default
Ubuntu image
image_id=ami-00000048
flavor=m1.small
frontend_nodes=1
compute_nodes=2
frontend_class=frontend

[cluster/torque]
cloud=hobbes
frontend_nodes=1
compute_nodes=2
frontend_class=frontend
security_group=default
CentOS image
image_id=ami-0000004f
flavor=m1.small
login=gc3-user
setup_provider=ansible-pbs

[cluster/aws-slurm]
cloud=amazon-us-east-1
login=ubuntu
setup_provider=ansible-slurm
security_group=default
ubuntu image
image_id=ami-90a21cf9
flavor=m1.small
frontend=1
compute=2

[cluster/matlab]
cloud=hobbes
setup_provider=ansible_matlab
security_group=default
image_id=ami-00000099
flavor=m1.medium
frontend_nodes=1
worker_nodes=10
image_userdata=
ssh_to=frontend

Cluster node section

A cluster node for the node type <nodetype> of the cluster
<name> starts with:

[cluster/<name>/<nodetype>]

This section allows you to override some configuration values for
specific group of nodes. Assume you have a standard slurm cluster
with a frontend which is used as manager node and nfs server for the
home directories, and a set of compute nodes.

You may want to use different flavors for the frontend and the
compute nodes, since for the first you need more space and you don’t
need many cores or much memory, while the compute nodes may requires
more memory and more cores but are not eager about disk space.

This is achieved defining, for instance, a bigdisk flavor (the
name is just fictional) for the frontend and 8cpu32g for the
compute nodes. Your configuration will thus look like:

[cluster/slurm]
...
flavor=8cpu32g
frontend_nodes=1
compute_nodes=10

[cluster/slurm/frontend]
flavor=bigdisk

 Copyright 2013, Grid Computing Competence Centre, University of Zurich.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	elasticluster 1.0 documentation

Usage

The syntax of the elasticluster command is:

elasticluster [-v] [-s PATH] [-c PATH] [subcommand] [subcommand args and opts]

The following options are general and are accepted by any subcommand:

	-h, --help

	Show an help message and exits.

	-v, --verbose

	Adding one or more -v will increase the verbosity accordingly.

-s PATH, --storage PATH

Path to the storage folder. This directory is used to store
information about the cluster which are running. By default this
is ``~/.elasticluster/storage`

WARNING: If you delete this directory elasticluster will not
be able to access the cluster anymore!

-c PATH, --config PATH

Path to the configuration file. By default this is
~/.elasticluster/config

elasticluster provides multiple subcommands to start, stop, resize,
inspect your clusters. The available subcommands are:

	start

	Create a cluster using one of the configured cluster tmplate.

	stop

	Stop a cluster and all associated VM instances.

	list

	List all clusters that are currently running.

	list-nodes

	Show information about the nodes in a specific started cluster.

	list-templates

	Show the available cluster configurations, as defined in the
configuration file.

	setup

	Run ansible to configure the cluster.

	resize

	Resize a cluster by adding or removing nodes.

	ssh

	Connect to the frontend of the cluster using the ssh command.

	sftp

	Open an SFTP session to the cluster frontend host.

An help message explaining the available options and subcommand of
elasticluster is available by running:

elasticluster -h

Options and arguments accepted by a specific subcommand <cmd> is
available by running:

elasticluster <cmd> -h

The start command

This command will start a new cluster using a specific cluster
configuration, defined in the configuration file. You can start as
many clusters you want using the same cluster configuration, by
providing different --name options.

Basic usage of the command is:

usage: elasticluster start [-h] [-v] [-n CLUSTER_NAME]
 [--nodes N1:GROUP[,N2:GROUP2,...]] [--no-setup]
 cluster

cluster is the name of a cluster section in the configuration
file. For instance, to start the cluster defined by the section
[cluster/slurm] you must run the command:

elasticluster start slurm

The following options are available:

	-h, --help

	Show an help message and exits.

	-v, --verbose

	Adding one or more -v will increase the verbosity accordingly.

	-n CLUSTER_NAME, --name CLUSTER_NAME

	Name of the cluster. By default this is the same as the cluster
configuration name.

--nodes N1:GROUP[,N2:GROUP2,...]

This option allow you to override the values stored in the
configuration file, by starting a different number of hosts fore
each group.

Assuming you defined, for instance, a cluster with the following
type of nodes in the configuration file:

hadoop-data_nodes=4
hadoop-task_nodes=4

and you want to run instead 10 data nodes and 10 task nodes, you
can run elasticluster with option:

elasticluster ... --nodes 10:hadoop-data,10:hadoop-task

	--no-setup

	By default elasticluster will automatically run the setup
command after all the virtual machines are up and running. This
option prevent the setup step to be run and will leave the
cluster unconfigured.

When you start a new cluster, elasticluster will:

	create the requested/configured number of virtual machines.

	wait until all the virtual machines are started.

	wait until elasticluster is able to connect to all the virtual
machines using ssh.

	run ansible on all the virtual machines (unless --no-setup
option is given).

This process can take several minutes, depending on the load of the
cloud, the configuration of the cluster and your connection
speed. Elasticluster usually print very few information on what’s
happening, if you run it with -v it will display a more verbose
output (including output of ansible command) to help you understanding
what is actually happening.

After the setup process is done a summary of the created cluster is
printed, similar to the following:

Cluster name: slurm
Cluster template: slurm
Frontend node: frontend001
- compute nodes: 2
- frontend nodes: 1

To login on the frontend node, run the command:

 elasticluster ssh slurm

To upload or download files to the cluster, use the command:

 elasticluster sftp slurm

The first line tells you the name of the cluster, which is the one you
are supposed to use with the stop, list-nodes, resize,
ssh and sftp commands.

The second line specifies the cluster configuration section used to
configure the cluster (in this case, for instance, the section
[cluster/slurm] has been used)

The Frontend node line shows which node is used for the ssh
and sftp commands, when connecting to the cluster.

Then a list of how many nodes of each type have been started

The remaining lines describe how to connect to the cluster either
by opening an interactive shell to run commands on it, or an sftp
session to upload and download files.

The stop command

The stop command will terminate all the instances running and
delete all information related to the cluster saved on the local disk.

WARNING: elasticluster doesn’t do any kind of test to check if the
cluster is used!

Basic usage of the command is:

usage: elasticluster stop [-h] [-v] [--force] [--yes] cluster

Like the start command, cluster is the name of a cluster
section in the configuration file.

The following options are available:

	-h, --help

	Show an help message and exits.

	-v, --verbose

	Adding one or more -v will increase the verbosity accordingly.

--force

If some of the virtual machines fail to terminate (for instance
because they have been terminated already not by elasticluster),
this command will ignore these errors and will force termination
of all the other instances.

--yes

Since stopping a cluster is a possibly desruptive action,
elasticluster will always ask for confirmation before doing any
modification, unless this option is given.

The list command

The list command print a list of all the cluster that have been
started. For each cluster, it will print a few information including
the cloud used and the number of nodes started for each node type:

$ elasticluster list

The following clusters have been started.
Please note that there's no guarantee that they are fully configured:

centossge

 name: centossge
 template: centossge
 cloud: hobbes
 - frontend nodes: 1
 - compute nodes: 2

slurm

 name: slurm
 template: slurm
 cloud: hobbes
 - frontend nodes: 1
 - compute nodes: 2

slurm13.04

 name: slurm13.04
 template: slurm13.04
 cloud: hobbes
 - frontend nodes: 1
 - compute nodes: 2

The list-nodes command

The list-nodes command print information on the nodes belonging to
a specific cluster.

Basic usage of the command is:

usage: elasticluster list-nodes [-h] [-v] [-u] cluster

cluster is the name of a cluster that has been started previously.

The following options are available:

	-h, --help

	Show an help message and exits.

	-v, --verbose

	Adding one or more -v will increase the verbosity accordingly.

-u, --update

By default elasticluster list-nodes will not contact the EC2
provider to get up-to-date information, unless -u option is
given.

Example:

$ elasticluster list-nodes centossge

Cluster name: centossge
Cluster template: centossge
Frontend node: frontend001
- frontend nodes: 1
- compute nodes: 2

To login on the frontend node, run the command:

 elasticluster ssh centossge

To upload or download files to the cluster, use the command:

 elasticluster sftp centossge

frontend nodes:

 - frontend001
 public IP: 130.60.24.61
 private IP: 10.10.10.36
 instance id: i-0000299f
 instance flavor: m1.small

compute nodes:

 - compute001
 public IP: 130.60.24.44
 private IP: 10.10.10.17
 instance id: i-0000299d
 instance flavor: m1.small

 - compute002
 public IP: 130.60.24.48
 private IP: 10.10.10.29
 instance id: i-0000299e
 instance flavor: m1.small

The list-templates command

The list-templates command print a list of all the available
templates defined in the configuration file with a few information for
each one of them.

Basic usage of the command is:

usage: elasticluster list-templates [-h] [-v] [clusters [clusters ...]]

clusters is used to limit the clusters to be listed and uses a
globbing-like pattern matching. For instance, to show all the cluster
templates that contains the word slurm in their name you can run
the following:

$ elasticluster list-templates *slurm*
11 cluster templates found.

name: aws-slurm
cloud: aws
compute nodes: 2
frontend nodes: 1

name: slurm
cloud: hobbes
compute nodes: 2
frontend nodes: 1

name: slurm_xl
cloud: hobbes
compute nodes: 2
frontend nodes: 1

name: slurm13.04
cloud: hobbes
compute nodes: 2
frontend nodes: 1

The setup command

The setup command will run ansible on the desired cluster once
again. It is usually needed only when you customize and update your
playbooks, in order to re-configure the cluster, since the start
command already run ansible when all the machines are started.

Basic usage of the command is:

usage: elasticluster setup [-h] [-v] cluster

cluster is the name of a cluster that has been started previously.

The following options are available:

	-h, --help

	Show an help message and exits.

	-v, --verbose

	Adding one or more -v will increase the verbosity accordingly.

The resize command

The resize command allow you to add or remove nodes from a started
cluster. Please, be warned that this feature is still experimental,
and while adding nodes is usually safe, removing nodes can be
desruptive and can leave the cluster in an unknwonw state.

Moreover, there is currently no way to decide which nodes can be
removed from a cluster, therefore if you shrink a cluster you must
ensure that any node of that type can be removed safely and no job
is running on it.

When adding nodes, you have to specify the type of the node and the
number of node you want to add. Then, elasticluster will basically
re-run the start and setup steps:

	create the requested/configured number of virtual machines.

	wait until all the virtual machines are started.

	wait until elasticluster is able to connect to all the virtual
machines using ssh.

	run ansible on all the virtual machines, including the virtual
machines already configured (unless --no-setup option is given).

Growing a cluster (adding nodes to the cluster) should be supported by
all the playbooks included in the elasticluster package.

Basic usage of the command is:

usage: elasticluster resize [-h] [-a N1:GROUP1[,N2:GROUP2]]
 [-r N1:GROUP1[,N2:GROUP2]] [-v] [--no-setup]
 [--yes]
 cluster

cluster is the name of a cluster that has been started previously.

The following options are available:

	-h, --help

	Show an help message and exits.

	-v, --verbose

	Adding one or more -v will increase the verbosity accordingly.

-a N1:GROUP1[,N2:GROUP2], --add N1:GROUP1[,N2:GROUP2]

This option allow you to specify how many nodes for a specific
group you want to add. You can specify multiple nodes separated by
a comma.

Assuming you started, for instance, a cluster named hadoop using
the default values stored in the configuration file:

hadoop-data_nodes=4
hadoop-task_nodes=4

and assuming you want to add 5 more data nodes and 10 more task
nodes, you can run:

elasticluster resize -a 5:hadoop-data,10:hadoop-task

-r N1:GROUP1[,N2:GROUP2], --remove N1:GROUP1[,N2:GROUP2]

This option allow you to specify how many nodes you want to remove
from a specific group. It follows the same syntax as the --add
option.

WARNING: elasticluster pick the nodes to remove at random, so
you have to be sure that any of the nodes can be
removed. Moreover, not all the playbooks support shrkinging!

--no-setup

By default elasticluster will automatically run the setup
command after starting and/or stopping the virtual machines. This
option prevent the setup step to be run. WARNING: use this
option wisely: depending on the cluster configuration it is
impossible to know in advance what the status of the cluster will
be after resizing it and NOT running the setup step.

--yes

Since resizing a cluster, especially shrinking, is a possibly
desruptive action and is not supported by all the distributed
playbooks, elasticluster will always ask for confirmation before
doing any modification, unless this option is given.

The ssh command

After a cluster is started, the easiest way to login on it is by using
the ssh command. This command will run the ssh command with the
correct options to connect to the cluster using the configured values
for user and ssh key to use.

If no ssh_to option is specified in the configuration file, the
ssh command will connect to the first host belonging to the type
which comes first in alphabetic order, otherwise it will connect to
the first host of the group specified by the ssh_to option of the
cluster section. However, running the command elasticluster
list-nodes <cluster> will show which host will be used as frontend
node.

The usage of the ssh command is as follow:

elasticluster ssh <clustername> [-- ssh arguments]

All the options and arguments following the -- characters will be
passed directly to the ssh command.

For instance, if you just want to run the hostname -f command on
the frontend of the cluster you can run:

elasticluster ssh <clustername> -- hostname -f

Note that since the IP address of the virtual machines are likely to
be reused by different virtual machines, in order to avoid annoying
warning messages from ssh elasticluster will add the following options
to the ssh command line:

	-o UserKnownHostsFile=/dev/null

	Use an empty virtual file to check the host key of the remote
machine.

	-o StrictHostKeyChecking=no

	Disable check of the host key of the remove machine, without
prompting to ask if the key can be accepted or not.

The sftp command

After a cluster is started, the easiest way to upload or download
files to and from the cluster is by using the sftp command. This
command will run the sftp command with the correct options to
connect to the cluster using the configured values for user and ssh
key to use.

If no ssh_to option is specified in the configuration file, the
sftp command will connect to the first host belonging to the type
which comes first in alphabetic order, otherwise it will connect to
the first host of the group specified by the ssh_to option of the
cluster section. However, running the command elasticluster
list-nodes <cluster> will show which host will be used as frontend
node.

The usage of the sftp command is as follow:

elasticluster sftp <clustername> [-- sftp arguments]

All the options and arguments following the -- characters will be
passed directly to the sftp command.

Note that since the IP address of the virtual machines are likely to
be reused by different virtual machines, in order to avoid annoying
warning messages from ssh elasticluster will add the following options
to the sftp command line:

	-o UserKnownHostsFile=/dev/null

	Use an empty virtual file to check the host key of the remote
machine.

	-o StrictHostKeyChecking=no

	Disable check of the host key of the remove machine, without
prompting to ask if the key can be accepted or not.

 Copyright 2013, Grid Computing Competence Centre, University of Zurich.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	elasticluster 1.0 documentation

Playbooks distributed with elasticluster

After the requested number of Virtual Machines have been started,
elasticluster uses Ansible [http://ansible.cc] to configure them based on the
configuration options defined in the configuration file.

We distribute a few playbooks together with elasticluster to configure
some of the most wanted clusters. The playbooks are available at the
share/elasticluster/providers/ansible-playbooks/ directory inside
your virtualenv if you installed using pip [https://pypi.python.org/pypi/pip], or in the
elasticluster/providers/ansible-playbooks directory of the github
source code. You can copy, customize and redistribute them freely
under the terms of the GPLv3 license.

A list of the most used playbooks distributed with elasticluster and
some explanation on how to use them follows.

Slurm

Tested on:

	Ubuntu 12.04

	Ubuntu 13.04

	ansible groups
	role

	slurm_master
	Act as scheduler and submission host

	slurm_clients
	Act as compute node

This playbook will install the SLURM [https://computing.llnl.gov/linux/slurm/] queue manager using the
packages distributed with Ubuntu and will create a basic, working
configuration.

You are supposed to only define one slurm_master and multiple
slurm_clients. The first will act as login node and will run the
scheduler, while the others will only execute the jobs.

The /home filesystem is exported from the slurm server to the compute nodes.

A snippet of a typical configuration for a slurm cluster is:

[cluster/slurm]
frontend_nodes=1
compute_nodes=5
ssh_to=frontend
setup_provider=ansible_slurm
...

[setup/ansible_slurm]
frontend_groups=slurm_master
compute_groups=slurm_clients
...

You can combine the slurm playbooks with ganglia. In this case the setup stanza will look like:

[setup/ansible_slurm]
frontend_groups=slurm_master,ganglia_master
compute_groups=slurm_clients,ganglia_monitor
...

Gridengine

Tested on:

	Ubuntu 12.04

	CentOS 6.3

	ansible groups
	role

	gridengine_master
	Act as scheduler and submission host

	gridengine_clients
	Act as compute node

This playbook will install Grid Engine [http://gridengine.info] using the packages
distributed with Ubuntu or CentOS and will create a basic, working
configuration.

You are supposed to only define one gridengine_master and multiple
gridengine_clients. The first will act as login node and will run the
scheduler, while the others will only execute the jobs.

The /home filesystem is exported from the gridengine server to
the compute nodes. If you are running on a CentOS, also the
/usr/share/gridengine/default/common directory is shared from the
gridengine server to the compute nodes.

A snippet of a typical configuration for a gridengine cluster is:

[cluster/gridengine]
frontend_nodes=1
compute_nodes=5
ssh_to=frontend
setup_provider=ansible_gridengine
...

[setup/ansible_gridengine]
frontend_groups=gridengine_master
compute_groups=gridengine_clients
...

You can combine the gridengine playbooks with ganglia. In this case the setup stanza will look like:

[setup/ansible_gridengine]
frontend_groups=gridengine_master,ganglia_master
compute_groups=gridengine_clients,ganglia_monitor
...

Ganglia

Tested on:

	Ubuntu 12.04

	CentOS 6.3

	ansible groups
	role

	ganglia_master
	Run gmetad and web interface.
It also run the monitor daemon.

	ganglia_monitor
	Run ganglia monitor daemon.

This playbook will install Ganglia [http://ganglia.info] monitoring tool using the
packages distributed with Ubuntu or CentOS and will configure frontend
and monitors.

You should run only one ganglia_master. This will install the
gmetad daemon to collect all the metrics from the monitored nodes
and will also run apache.

If the machine in which you installed ganglia_master has IP
10.2.3.4, the ganglia web interface will be available at the
address http://10.2.3.4/ganglia/

This playbook is supposed to be compatible with all the other available playbooks.

Hadoop

Tested on:

	Ubuntu 12.04

	CentOS 6.3

	ansible groups
	role

	hadoop_namenode
	Run the Hadoop NameNode service

	hadoop_jobtracker
	Run the Hadoop JobTracker service

	hadoop_datanode
	Act as datanode for HDFS

	hadoop_tasktracker
	Act as tasktracker node accepting
jobs from the JobTracker

Hadoop playbook will install a basic hadoop cluster using the packages
available on the Hadoop website. The only supported version so far is
1.1.2 x86_64 and it works both on CentOS and Ubuntu.

You must define only one hadoop_namenode and one
hadoop_jobtracker. Configuration in which both roles belong to the
same machines are not tested. You can mix hadoop_datanode and
hadoop_tasktracker without problems though.

A snippet of a typical configuration for an Hadoop cluster is:

[cluster/hadoop]
hadoop-name_nodes=1
hadoop-jobtracker_nodes=1
hadoop-task-data_nodes=10
setup_provider=ansible_hadoop
ssh_to=hadoop-name
...

[setup/ansible_hadoop]
hadoop-name_groups=hadoop_namenode
hadoop-jobtracker_groups=hadoop_jobtracker
hadoop-task-data_groups=hadoop_tasktracker,hadoop_datanode
...

OrangeFS/PVFS2

Tested on:

	Ubuntu 12.04

	ansible groups
	role

	pvfs2_meta
	Run the pvfs2 metadata service

	pvfs2_data
	Run the pvfs2 data node

	pvfs2_client
	configure as pvfs2 client and mount the filesystem

The OrangeFS/PVFS2 playbook will configure a pvfs2 cluster. It
downloads the software from the OrangeFS [http://orangefs.org/] website, compile and
install it on all the machine, and run the various server and client daemons.

In addiction, it will mount the filesystem in /pvfs2 on all the clients.

You can combine, for instance, a SLURM cluster with a PVFS2 cluster:

[cluster/slurm+pvfs2]
frontend_nodes=1
compute_nodes=10
pvfs2-nodes=10
ssh_to=frontend
setup_provider=ansible_slurm+pvfs2
...

[setup/ansible_slurm+pvfs2]
frontend_groups=slurm_master,pvfs2_client
compute_groups=slurm_clients,pvfs2_client
pvfs-nodes_groups=pvfs2_meta,pvfs2_data
...

This configuration will create a SLURM cluster with 10 compute nodes,
10 data nodes and a frontend, and will mount the /pvfs2 directory
from the data nodes to both the compute nodes and the frontend.

 Copyright 2013, Grid Computing Competence Centre, University of Zurich.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	elasticluster 1.0 documentation

Index

 Copyright 2013, Grid Computing Competence Centre, University of Zurich.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		elasticluster 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Grid Computing Competence Centre, University of Zurich.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

customize.html

 Navigation

 		
 index

 		elasticluster 1.0 documentation »

Customizing elasticluster

 © Copyright 2013, Grid Computing Competence Centre, University of Zurich.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

